Development and characterization of diamondback moth resistance to transgenic broccoli expressing high levels of Cry1C.

نویسندگان

  • J Z Zhao
  • H L Collins
  • J D Tang
  • J Cao
  • E D Earle
  • R T Roush
  • S Herrero
  • B Escriche
  • J Ferré
  • A M Shelton
چکیده

A field-collected colony of the diamondback moth, Plutella xylostella, had 31-fold resistance to Cry1C protoxin of Bacillus thuringiensis. After 24 generations of selection with Cry1C protoxin and transgenic broccoli expressing a Cry1C protein, the resistance that developed was high enough that neonates of the resistant strain could complete their entire life cycle on transgenic broccoli expressing high levels of Cry1C. After 26 generations of selection, the resistance ratios of this strain to Cry1C protoxin were 12,400- and 63,100-fold, respectively, for the neonates and second instars by a leaf dip assay. The resistance remained stable until generation 38 (G38) under continuous selection but decreased to 235-fold at G38 when selection ceased at G28. The Cry1C resistance in this strain was seen to be inherited as an autosomal and incompletely recessive factor or factors when evaluated using a leaf dip assay and recessive when evaluated using Cry1C transgenic broccoli. Saturable binding of (125)I-Cry1C was found with brush border membrane vesicles (BBMV) from both susceptible and Cry1C-resistant strains. Significant differences in Cry1C binding to BBMV from the two strains were detected. BBMV from the resistant strain had about sevenfold-lower affinity for Cry1C and threefold-higher binding site concentration than BBMV from the susceptible strain. The overall Cry1C binding affinity was just 2.5-fold higher for BBMV from the susceptible strain than it was for BBMV from the resistant strain. These results suggest that reduced binding is not the major mechanism of resistance to Cry1C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different cross-resistance patterns in the diamondback moth (Lepidoptera: Plutellidae) resistant to Bacillus thuringiensis toxin Cry1C.

Two strains of the diamondback moth, Plutella xylostella (L.), were selected using Cry1C protoxin and transgenic broccoli plants expressing a Cry1C toxin of Bacillus thuringiensis (Bt). Both strains were resistant to Cry1C but had different cross-resistance patterns. We used 12 Bt protoxins for cross-resistance tests, including Cry1Aa, Cry1Ab, Cry1Ac, Cry1Bb, Cry1C, Cry1D, Cry1E, Cry1F, Cry1J, ...

متن کامل

Examination of the F2 screen for rare resistance alleles to Bacillus thuringiensis toxins in the diamondback moth (Lepidoptera: Plutellidae).

A synthetic laboratory population of the diamondback moth, Plutella xylostella (L.), was used to test the F2 screen developed for detecting the frequency of rare resistance alleles to Cry1Ac and Cry1C toxins of Bacillus thuringiensis (Bt). Of the 120 single-pair matings set up, 106 produced enough F2 families for screening of Cry1Ac or Cry1C resistance alleles using both transgenic broccoli and...

متن کامل

Influences of Cry1Ac Broccoli on Larval Survival and Oviposition of Diamondback Moth

Larval survival and oviposition behavior of three genotypes of diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), (homozygous Cry1Ac-susceptibile, Cry1Ac-resistant, and their F1 hybrids), on transgenic Bacillus thuringiensis (Bt) broccoli expressing different levels of Cry1Ac protein were evaluated in laboratory. These Bt broccoli lines were designated as relative low, medium,...

متن کامل

Cross-resistance and stability of resistance to Bacillus thuringiensis toxin Cry1C in diamondback moth.

We tested toxins of Bacillus thuringiensis against larvae from susceptible, Cry1C-resistant, and Cry1A-resistant strains of diamondback moth (Plutella xylostella). The Cry1C-resistant strain, which was derived from a field population that had evolved resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai, was selected repeatedly with Cry1C in the laboratory. The Cry1...

متن کامل

Development of transgenic collards (Brassica oleracea L., var. acephala) expressing a cry1Ac or cry1C Bt gene for control of the diamondback moth

Collards (Brassica oleracea var. acephala) are an important vegetable crucifer produced worldwide for human consumption, and one subject to severe injury by Lepidoptera. We have produced Bacillus thuringiensis (Bt)-transgenic collard lines that have the potential to be used either for direct control or as a ‘‘dead end’’ trap crop for Lepidoptera. To produce collard lines expressing Bt genes, a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 66 9  شماره 

صفحات  -

تاریخ انتشار 2000